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The Beliaev-Zelivinsky boson expansion and particle-vibration 
coupling methods in an exactly soluble model 

D R Besi., J A Evans$ and N C Kraus$ 
Comision Nacional de Energia Atomica Investigaciones-Reacciones Nucleares, Avenida 
del Libertador, 8250 Buenos Aires, Argentina 

MS received 3 July 1972 

Abstract. The Beliaev-Zelivinsky boson expansion and particle-vibration coupling methods 
are studied in comparison with an exact treatment of the monopole model. Two of the three 
boson expansions considered were valid for all interaction strengths. A third expansion 
and the particle-vibration coupling method were found to be  equivalent to  perturbation 
theory. The difficulty associated with the overcompleteness of the basis in the particle- 
vibration coupling method was resolved both in the computation of the energies and the 
matrix element of the monopole specific operator. 

1. Introduction 

The observation that the collective excitations of many-body systems often give rise to a 
harmonic spectrum has led to the development of theories which incorporate the use of 
phonon coordinate variables from the outset. One of the simplest examples is the 
random phase approximation. However, since the random phase approximation 
diverges as the phase transition is approached, various alternative theories, or improve- 
ments to the random phase approximation, have been proposed. A widely used model 
against which such approximations have been tested is that introduced by Lipkin 
et a1 (1965). We work with a slight generalization of the Lipkin model called the mono- 
pole model, also discussed in the previous reference, because the former is trivial in the 
(fundamental) Tamm-Dancoff approximation which is of some interest to us here. 

I t  is our purpose to investigate the Beliaev-Zelivinsky boson expansion (BeIiaev and 
Zelivinsky 1962) and particle-vibration coupling methods with this model. These 
methods will be abbreviated by BZ and PVC respectively. A similar study was done with 
the Lipkin model for both the BZ and Marumori boson expansion methods (Marumori 
et a1 1964)y. We note, however, that this treatment did not exactly follow the BZ method 
as discussed in 9 3 because the Hamiltonian was normal ordered in the boson operators. 
The solutions were then found to  diverge as the phase transition was approached. 

t Fellow of the Consejo Nacional de Investigaciones Cientificas Tecnicas, Cartera del Investigador Cientifico, 
Buenos Aires, Argentina. 

$ Present address: University of Sussex, Brighton, UK. Work supported in part by the fundacion Sauberan. 
5 Present address: School of Physics, University of Minnesota, Minneapolis, Minnesota 55455, USA. Work 
supported by US Atomic Energy Commission contract no. A (II-I)-I 764. 
?The relation between the two methods is discussed quite clearly by Marshalek (1971), Janssen et a1 (1971) 
and Li et a1 (1971). 
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BZ boson expansion and PVC methods 7 

Since this result may cast doubt on the utility of the BZ method, and to consider other 
points of interest associated with this theory, we feel it is important to note that an adher- 
ence to the BZ method gives very good results for all values of the interaction strength 
in the monopole model. 

The monopole model is briefly outlined in 5 2. In 5 3, three types of BZ expansion 
are considered ; the Holstein-Primakoff (HPE), the Tamm-Dancoff @DE) and the random 
phase (RPE). In 9 4 the PVC method is considered, while all numerical results are presented 
in 5 6. A comparison of the various methods is made in 5 5. 

2. The monopole model 

The monopole model Hamiltonian on two levels is defined as 

t V 
H = 5 1 c a ~ , u a m , u - -  1 a L , u a m ~ u , a m , , - u , a m , - u  

2 m,u  2 in," 
u,u' 

where creates a fermion with quantum numbers (nz, i 1) In the (y::::) level, nz serving 
to denote the degenerate states of which there are 2Q = 2j+ 1 within each leve!. Its 
general feature is that pairs of particles are scattered between the level5 without changing 
their values of ni. Thus, with the definition that the parity z of a state i s  (even, odd) 
if the population of the lower level (0 = - 1) is (even, odd), it is observed that the states 
of different parities are not connected and the energy matrix splits into two. Defining 
the four physical operators 

and 

the monopole Hamiltonian may be re-expressed as 

H = 6 -(B,+B-,)-R - V Q ( A t + A ) i + V R  13) 

where we have chosen, as always unless otherwise stated, the number of particles N to be 
equal to 2R, that is, in the uncorrelated ground state (V  = 0) the lower level is filled and 
the upper level empty. The physical operators obey the commutation relations 

i;" 1 

B i + B - ,  [ A ,  A t ]  = 1 -__- 
2\' a 

An exact solution of the Elaniiltoriian makes use of the correspondence of the physical 
operators to the operators 

\I Cl 
To = -(B,+B-,)-R, T+ = \ '(2R)A+, T.. = T: ( 5 )  2 
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which, from the relations (41, obey the commutation relations 

[a;, T-] = 2T0. [To, Til = k TI. (6) 

The T operators are then identified as the generators of R ,  and one may proceed to 
obtain the properties of I1 as was done by Lipkin et a1 (1965). For example, the states 
may be labelled by the total isospin T and its projection M T .  Using the discussion 
found therein, limiting values of various interesting quantities may be calculated. 
These prove to be useful when evaluating numerical results since they indicate the 
dominance of one interaction over the other. Thus in the monopole limit (E = 0), 
the ground and first excited state energies (both of which could be degenerate) are 

E ,  = - VQ(2R - 1) 
/ 

(7)  

A convenient quantity with which the state of the system can be pictured very readily is 
the occupation number of the upper level in the ground state divided by Q, simply called 
the ‘normaiized’ occupation number f i ,  and which has the obvious limits (when II: = 2R) 

The absolute value squared of the matrix element of the monopole specific operator, 
C , ~ ( R ) ,  is defined as 

O , ~ ( R )  = /(first; 2Rl(At + A)lground; 2R)I2 (9) 

with the notation that Iground; 2!2) is the eigenvector of the ground state of the 2R 
particle system, etc. o,(R) has the limits 

for 6 = 0, I/ # 0 

for E # 0, I/ = 0. 
(10) i: o,(Q) = 

The one body transfer operator ajmu has fractional parentage coefficients between the 
states of 2!2 and 2R+ 1 particles 

< M T  ; j ,  m ; 2Q -t- 1 IajT,l,, T‘,  IWk : j r 9  m‘ ; 2Q) 

= jf2 - ;, ? V I T ;  j ,  m ;  2!2 + llu;mulQ, MT ; 0,o; 2n> 

Using equation (ll),  the one body transfer cross section ol(S,, S,) from state 1 of the 
2!2 particle system to state 2 of the 2R + 1 particle system may be calculated. 

0 = k l  (12) 1 0,(Sl, S,) = I(S2; 2Q+ lla;mol& ; 2Q)I2 

where the 6 functions indicate that o,(S,, S,) will be zero if a particle is transferred into 
the upper (lower) level between states of different (same) parity. In particular, if SI and S, 
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are the ground states of their respective systems then 

for E = 0, V # 0 

for E # 0, V = 0. 
a,(g, g) = 

We will also calculate g1 when SI represents the ground state and S ,  the first excited 
state (f), or the second excited state (s). 

3. Beliaev-Zelivinsky expansions 

The appealing feature of the BZ method is that i t  yields an expansion in terms of a small- 
ness parameter, here R- ' ,  and more generally the inverse of the number of states avail- 
able to the active particles. As originally formulated the method may violate exclusion 
principle constraints and therefore it is not clear how this violation may effect the 
solutions. Marshalek (1971) has pointed out a means of satisfying these constraints 
within the BZ method. Likewise, it is known that the Marumori boson expansions as 
originally formulated do not readily converge, although they do take into account all 
exclusion principle requirements. Li et a1 (1971) have recently given a modified Maru- 
mori expansion which is developed in a smallness parameter. These problems are of no 
concern here since, as was shown by Pang et  a1 (1968), both methods lead to the same 
expansion for the Lipkin (or monopole) model. The only effect of the exclusion principle 
is to limit the size of the basis. We may thus focus attention on the convergence properties 
of the BZ method. 

Pairs of fermion operators may be expressed as an expansion in powers of the boson 
operators a, at  where the boson operators? satisfy the commutation relations [U, ut ]  = 1 
and [ U , S I ]  = 0. The resultant operator (F)B is called the boson image of the original 
fermion operator F .  In the method of Beliaev and Zelivinsky the boson images are 
required to satisfy the same commutation relations as the original fermion operators. 
It is clear from the relations (4) that the boson images of B -  and B ,  can differ by at most 
a constant. In the present case, there being 2R particles, this constant is zero. 

The boson images act in a many boson space, the functions of which are in one to 
one correspondence with the original many fermion functions. The identification of 
this physical boson space is not obvious in general. In the present model, however, it 
presents no difficulty. 

We shall consider three different expansions. 
(i) Holstein-Primakoff expansion (HPE) 

(B)B = h,fiP 
p = o  

where f i  = U ~ U  and (B)B  is the common boson image of B ,  ,. The coefficients in equations 
(14) follow from an expansion in powers of f i  of the exact boson images of the T operators 

t One type of boson is sufficient but not necessary to solve the monopole model. The latter has been solved 
by Evans and Kraus (1972) using four independent bosons. 
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given by Holstein and Prirnakoff (1940) ; 

(T& = h- T 

(T+)B = (T i )B  = cct(2T-A)' 

where 7 is an integer or semi-integer satisfying 2T 6 min(N, 4R - N). The boson 
number : I ,  varies from zero to 2T, so that the expansions (14) converge. An n boson 
function labelled by T, corresponds to an N fermion function with spin symmetry 
[2+.'-7, 12']. In our case N = 2T = 2R, so that the corresponding spin function is unique 
having total spin zero. 

Using equations ( 5 )  and (15) the boson image of the Hamiltonian (3) may be written 

and from this a series expansion in R -  for the energy eigenvalues may be obtained. 
In particular the lowest excitation energy is given by 

Thus a boson Hamiltonian is available independent of the method of Beliaev and 
Zelivinsky which, in addition to providing the exact solution, directly yields expansions 
in R- ' .  

(ii) Tamm-Dancoff expansion (TDE) 

2 

(A+)B = cct  b,(Ut)'d' 
u = o  

Unlike the HPE, the TDE is normal ordered. Both expansions have the common 
property that the boson vacuum corresponds to the fermion state with no particle- 
holes present. Since measures this last quantity it is apparent that CO = 0. More- 
over, one obtains 

b2 = -4(1+2b1)+4(1+4bl+2b:) = 0(W2) 

b, = 0(Kf). 



BZ boson expansion and PVC methods 11 

We note that there are just the necessary number of equations to determine all the 
coefficients. Using these coefficients, the boson image of the Hamiltonian reads 

(H)B = (&a)€ - VR(2ii + 1 + a2 +(at)2 +(4bj - b: -6b2)A2 i -b l (a2  + ( x + ) ~ )  

+(2bl +b:)(Aa2+(rt)2A)+(b:+2b2)(A+2A3+iia2+(xt)2A)) +O(!X3) .  

(200) 
Expanding the coefficients to R - 2  

(EqB 'v (A-R)€+ vn 1-2h+- ( 
I 1 

- vn 1 - - -7 (2 + ( H + ) 2 )  - ---(Ad + (E+)%) . {[ bn 3:n ) 2R 

Using the Hamiltonian (20) and perturbation theory, an expansion of the energy in 
powers of R - '  is obtained. We thus may reproduce, for instance, expression (17) for 
the lowest excitation energy. Alternatively, we may diagonalize either (20a) using (19) 
or (20b) within the physical boson basis. Both of these diagonakations effectively 
include some higher order terms in R-  '. 

Although both (20a) and (20b) were truncated at b,  they differ by the fact that the 
coefficimts in (20a) involve an infinite series in powers of R- ' .  These may cancel with 
higher powers in the terms which were cut off. In (20b), however, all contributions to 
R- ,  were retained and all higher orders discarded. 

The relation between the coefficients of HPE and TDE for the Lipkin model is given by 
Pang et a1 (1968). In this reference, the commutation relations are satisfied by a ?DE 

as in equation (18) and then the Hamiltonian is normal ordered. Thus the coefficient 
of a term in containing U bosons is made up to contributions of all powers of R -  ' 
(larger than $1, - 1). An alternative procedure which is more consistent with the original 
idea of Beliaev and Zelivinsky is to fix the maximum order ofR- ' and use as many bosons 
as required with that power of K'. Thus if we admit up to the power Cl('-*'), terms 
up to U phonons are to be included in the Hamiltonian. It is our conclusion, based on 
numerical calculations, that the latter procedure gives consistently good results for the 
monopole force (see 9 6) and, in addition, it is probably easier to generalize for more 
complicated situations. 

The matrix element of the monopole specific operator may also be calculated using 
perturbation theory. To R- '  and second order in the interaction it is the sum of 

and 

(iii) Random phase expansion (RPE). 
Another method which has been widely used (Beliaev and Zelivinsky 1962, Pang et a1 
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1968, Sorensen 1968, 1969, Bes and Dussel 1969) is to make a canonical transformation 

Xt  = %Lp+ +pLp (22) 

where ,i and ,U are given by the random phase approximation. 

by allowing more terms in the expansions: 
A more natural generalization of the random phase approximation (RPA) is obtained 

The commutation relation (4b) determines the coefficients c ~ - ~ , ~  (except coo) as functions 
of the bP-u ,c .  In lowest order, 

G o  + b2,l 
c Q  . 

c11 = 

Thz relation (4a) implies a constraint between b , ,  and bo, .  

Use has been made of the fact that c o o  is of lower order than unity, since the number of 
particle-hole pairs in the ground state must be a small number. 

In lowest order the Hamiltonian (H)B has two terms (apart from a constant). The 
first is proportional to A and the second one to a2  + r t 2 .  Since one of the bs in equation 
(25) is still undetermined, we use i t  in order to diagonalize (H)B. This supplies a further 
constraint 

and, not surprisingly, the RPA result: 

Moreover, 

F - - W  k' = --. €+U 

2, ( E O )  
0 1 b , ,  = ___ 

2 4  (ew)' 

In the next order a similar procedure leads to 

In order to obtain this, coo has been evaluated from the RPA correlated ground state 
(Sanderson 1965). Expanding o from its KPA value (27) yields the result in (17) to order 
R-  

It is easily seen that continuing in this manner with the RPE always produces a 
diagonal Hamiltonian and a consistent expansion in R- ' .  It is also clear that a finite 
expansion in R- will not converge for o I= 0. 

which was consistently retained in deriving (29). 
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4. Particle-vibration coupling 

An alternative approach to the boson expansion techniques has been suggested by 
Mottelson (1968). The method involves the use of a phonon plus a single-particle 
Hamiltonian which are coupled through an interaction which is linear in the boson 
operator. Thus in zeroth order in the interaction, the particle and phonon degrees of 
freedom are independent of each other. The Hamiltonian is given by 

Here, o is the phonon energy and A is the particle-vibration coupling constant. These 
two parameters are functions of V and R, which will be determined through the RPA 

in order to compare with low order perturbation theory. 
This method differs from older treatments by the introduction of the vertices l(c) and 

l(d) of figure 1. For the particular case of the monopole interaction, the usual vertices 
l (u)  and l(b) vanish. 

Figure 1. Particle-vibration interaction vertices 

In order to calculate o we consider the linearized commutator of A' with the Hamil- 
tonian (3) 

[ H ,  A'] CA' -(2Q-- I ) V A t  --(2R- 1)VA. (31) 

Solution of the coupled eigenvalue equations for A t ,  A then gives the values of equation 
(27) in the limit R --f x and V Q  finite. However, equation (31) contains important 
terms of order V as distinct from VR. Of these, the diagonal one is just the Fock cor- 
rection to the energy of a particle with CT = + 1. The off-diagonal term in this order 
arises from the exchange interaction at  vertices where two particleehole pairs are simul- 
taneously created or destroyed. These effects are due to the terms neglected when 
treating the monopole pair operator A t  as a true boson creator and are therefore absent 
in the boson approximation (Lane 1964). However, they represent physical effects 
contributing to the order in which we are working and would give rise to additional 
graphs if not included in the RPA. It is interesting to note that these contributions plus 
all others of the same order are automatically taken into account by the BZ method 
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detailed in the previous section. Inclusion of these terms leads to 

It is clear that if 

then 

( 3 3 )  

The second order contribution to the energy of the phonon corresponds to the 
graphs given in figures 2(a) and 2(b). However, the processes represented there have 
been taken into account in the definition of the phonon and therefore should not be 

I 

Figure 2. Graphs which do not contribute to the phonon energy 

included. Quite geLierally, we suppress all diagrams in which the phonon is decomposed 
into its components and composed again without any interaction affecting the particle- 
hole components. The lowest order contributing graphs occur in fourth order. In this 
order there are two types of graph. The first one (figure 3(a))  corresponds to the ex- 
change between the particle (hole) in a vacuum fluctuation. The second type (figure 3(b))  
represents the process through which (i) the particle in the component of a phonon 
falls into the hole of a component of a vacuum fluctuation by emitting a phonon and 
(ii) this phonon together with the remaining pair is mixed again with the vacuum. 

To proceed with the calculation of the contribution of these graphs A must be deter- 
mined. This can be done by requiring that the matrix element of the specific operator 
A+ + A  between the phonon vacuum and the one phonon state should be given by the 
RPA value ( ~ / w ) " ~ t .  From graphs 4(a) and 4(b) we conclude that 

(8R) E A 112 

c 2 - m 2  = It] 
t To lowest order in Q- 
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Figure 3. Fourth order contributions to the energy. 

Figure 4. Lowest order graphs for the specific operator matrix element. 

hence 

2 - o2 
(8Qco)'l2 ' 

A=---- (34) 

As a check on consistency we may calculate the energy correction given by graphs 
2(a)  and 2(b) using the value of .4 in equation (37). The result is easily found to be 
- (c2 - w2) /20  which differs from - ( e  - o) by a term proportional to V 2 .  This implies 
consistency to order I/. Summing the contributions of all the different time orderings 
implied by the graphs shown in figure 3(a)  we find 

while those implied by figure 3(b) give 

Adding these expressions to that already found for o reproduces the result given by 
equation (17) tc order ( V Q / C ) ~  and Q - ' .  

The two degrees of freedom bear a deeper relation to each other than that described 
by the interaction between them. Although they were treated in lowest order as being 
independent, in fact the phonon mode is itself built up from particle excitations so that 
there is an essential redundancy in the description of the states of the system. A pres- 
cription must therefore be found to  treat the two degrees of freedom in a consistent 
manner. This is in contrast, for example, to the case of the electron-phonon system in a 
metallic lattice. For this reason we must use in place of A t  an effective monopole pair 
operator which acts on both degrees of freedom. By requiring that the matrix elements 
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between the zero and one phonon states be as given by the RPA we deduce 

(At) , , ,  = A t  + XCl+ + y r  (35 )  
where x and y are the matrix elements represented by the graphs in figures 4(a) and 4(b) 
respectively. The matrix element of (At),,, is then given by the graph in figure 4(a), 
those in figure 5, which are clearly related to the energy graphs of figure 3, and those of 
figure 6. To the order considered above, figures 6(a)  and 6(b) carry a factor x 2: 1 
while 6(c) carries a factor y = VSz/c. Evaluation of these graphs gives the result already 
quoted in equation (21a). A similar analysis for (A)eff reproduces equation (21b). 

( 0 )  ( b )  
Figure 5. Third order contributions to the specific operator matrix element. 

Figure 6. Fourth order contributions to the specific operator matrix element. 

It should be emphasized that the inclusion of all these graphs is necessary to obtain 
agreement with equations (21). A large number of spurious contributions from indi- 
vidual graphs are cancelled by others. It is our conclusion that once a suitable selection 
of graphs has been made, the effects of redundancy are removed automatically by the 
particle-vibration interaction which incorporates the true relation between the two 
modes. 

5. Comparison of approximations 

We are now in a position to  compare the theoretical results ofthe three boson expansions 
(HPE, TDE, RPE), and the PVC method. The HPE solves the problem exactly because all the 
coefficients are known and summed ; also the HPE specifies the correct boson basis size 
(here 2 T f  1). In general we can say that if the group underlying a given Hamiltonian is 
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known, then in principle an HPE may be made which will solve the problems exactly, 
and of course provide truncated boson expansions. If the group is not well known, 
and therefore the HPE is too difficult to find, then the use of a TDE with the BZ rules will 
yield a power series in the expansion parameter W', where R is proportional to the 
number of states available to the active particles. In a general case the relation between 
the HPE and TDE is that the coefficients of the HPE will contain polynomials of R-  ' 
corresponding to a partial summation of powers of R - '  in each term of the series. 
If these functions are expanded in powers of R-  ', then the collected terms of an arbitrary 
power in R - '  will yield the corresponding term of the TDE result. Therefore, when 
seeking the HPE of higher groups, the BZ method employing the technically more simple 
(normal ordered) TDE can provide a guide and a useful check for the lower order terms. 

Expanding the RPA equation (27) which defines the phase transition region, gives 

This may be compared with perturbation theory results made with the TUE, the results 
with RPE or the graph method, all of which reproduce equation (17) to the particular 
order treated in R- ' .  We thereby verify the well known theorem that the RPA is an 
approximation which retains the zeroth order terms in R for all orders in the perturbation 
theory of the collective interaction parameter VR, that is, it reproduces all orders of 
perturbation theory for VR finite and infinite degeneracy. I t  may have been hoped that 
the undetermined coefficients of the RPE might constitute extra degrees of freedom 
through which a more rapid convergence of the series can be obtained. However, the 
necessity of using the coefficients determined from the RPA as a zeroth order approxima- 
tion gave results identical to those from the perturbation treatment of the TDE (to the 
order expanded in R- l ) .  That the RPE result is only valid below? (the slightly shifted) 
phase transition point given by the RPA is simply the statement that the higher order 
approximation will contain the general features of the zeroth order on which they are 
based. 

The numerical results presented in the next section may be summarized by stating 
that the diagonalization of a Hamiltonian derived from a truncated TDE (or HPE) gives 
excellent results below, through and far above the RPA phase transition. Remembering 
this and pursuing the comparison between the RPE and TDE (or HPE), we are lead to an 
interesting conclusion ; If a consistent boson expansion is made, that is, an exact diagonal- 
ization such as RPA or RPE, then the solution will break down as a phase transition is 
approached. However if a truncated TDE (or HPE) is made to a chosen power in Q-', 
then the diagonalization process in the physical (finite) boson basis in fact includes 
certain (infinite) series in 0- ',and these higher powers must be those required to prevent 
the divergence of the solution near a phase transition. Thus an ambitious consistent 
expansion in powers of the small parameter R-  is doomed because certain higher order 
(to infinity) terms are necessary for convergence over the entire range of the inter- 
action(s). 

As only certain series of powers of R-  ' are included in such a diagonalization, we can 
expect that qualitative and approximate quantitative arguments (to estimate errors, for 
example) will hold utilizing the idea that R- ' is an expansion parameter. 

t To go above the phase transition with the RPA, a transformation to quasi-particles could first be made and 
then the RPA introduced as has been done, eg, by Sorensen (1967). 
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6. Discussion of numerical results 

Exact energy eigenvalues and eigenvectors for the monopole model were obtained by 
diagonalizing the HPE Hamiltonian (16) in the physical boson space. The matrix for the 
ground state multiplet is of rank (Q+ I), and systems with Q = 2 ,8  and  32 are considered. 
The TD results were obtained by expanding the matrix elements t o  order Q-’, Q - 2  

and Q - 3  before diagonalization. Values of the excitation of the first excited state calcu- 
lated from perturbation theory on  TD Hamiltonians (or equivalently from RPE results 
or the PVC method) are also given for comparison. 

The single particle energy t was set equal to unity for all calculations, and  ( V Q )  
was varied from 2’ t o  2 - 6 .  The KPA phase transition is at V Q  = T 2 .  

The exact results are in the first column of each table and the remaining columns if 
labelled by Q - ’ .  Q-’  or  give the TD results to the specified order. The perturbation 
theory results appear in columns labelled ‘first order’, ‘second order’ etc. An entry ‘ex’ 
means that the result was exact to within the precision of the calculation. 

Tables 1 , 2  and 3 show the values of the various calculated quantities as functions of 
three values of VQ.  A striking result is the accuracy achieved with the R = 2 system. 
For  this system it is only in the highly perturbed region that excited state wavefunctions 
are moderately accurate. In the other regions the approximation is quite good. 

Comparison between the Q- TDE truncation and  first, second and  third order per- 
turbation theory can be made by referring to  table 4. The perturbation theory results 

Table 1. The Q = 2 system; comparison of calculated quantities as a function of V Q  and 
the W’.  Q-’, and truncations of a Tamm-Dancoff boson expansion. Notation is 
discussed in C: 3 

VR ’€ Exact 

- 384,003 
- 384,003 
- 0.028 297 

0,997 396 
3.99997 
0.502 604 
0.28 1 240 
0.000 000 

- 2.06 096 
- 1.44 300 
-0,476 329 
-0,038 553 

1.55 124 
0.98001s 
0.000 726 
0.000 708 

- 2.00 076 
- 1.04 797 
- 0.062 454 

0.000 389 
1,04915 
0.999 785 
0.000 000 
0.000 019 

R - ’  

- 390,001 
- 387.962 
- 0.1 16 430 

1.00 983 
4,48213 
0,496 362 
0,246 389 
0.000 03 1 

_ _ _ _ ~  

- 2.06 229 
- 144 574 
-0.479 589 

0,039 455 
1.57 3 10 
0.995 837 
0.000 758 
0.000 795 

- 2.00 077 
- 1.04 802 
- 0.062 527 

0.000 398 
1.05 026 
0,999 779 
ex 
0.000 021 

r2 

- 387.950 
-385.512 
- 0.092 930 

1.00 664 
4,16584 
0,497 974 
0,278 493 
0.000 01 1 

~~~ 

-2.06 119 
- 1.44 r.04 
-0,478 989 

0.038 763 
1.55 625 
0.995 931 
0.000 733 
0.000 720 

ex 
- 1 04 799 
- 0.062 450 

0.000 39 1 
1.04 930 
0 999 784 

0.000 020 
ex 

- 386.405 
- 384.594 
-0.068 754 

1.00 350 
4,074 18 
0,499 549 
0.279 5 18 
0.000 004 

- 2.06 103 
- 1.44 341 
-0.478 100 

0.038 643 
ex 
0,995 946 
0.000 729 
0.000 707 

ex 
- 1.04 798 
- 0.062 489 

0.000 39 1 
1.04 918 
ex 
ex 
ex 
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Table 2. T h e  $1 = 8 sys tem:  details as for table 1 
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Exact a-’ n-3 

- 1920.01 
- 1920.01 
- 1440.01 

0,997 917 
15.9 999 
0.501 042 
0,490 586 
0.000 coo 

-8.11 535 
- 7.71 995 
- 7.14 187 

0,030 446 
2.43 057 
0,984 509 
0,001 665 
0.000 267 

- 8.00 097 
-7.06 112 
-6.11 274 

0.000 128 
1.06 386 
0.999 934 
0.000 000 
0.000 001 

- 1922.00 
- 1922.00 
- 1442.00 

0,998 953 
18.0 796 
0.500 523 
0,491 089 
ex 

- 8.1 1 549 
- 7.72 028 
- 7.14 229 

0,030 494 
2.43 673 
0.984 484 
0.001 670 
ex 

ex 
ex 

ex 

ex 
ex 
ex 

--6.11 275 

1.06 393 

- 1921.07 
- 1921.07 
- 1441.31 

0,998 727 
16.6 265 
0.500 636 
0.490 979 
ex 

- 8.1 1 536 
- 7.71 999 
-7.14 197 

0,030 452 
2.43 118 
0,984 506 
0 001 666 
ex 

ex 
ex 

ex 
ex 
ex 
ex 
ex 

ex 

- 1920.60 
- 1920.60 
- 1440.92 

0.998 501 
16.2 443 
0,500 749 
0.490 867 
ex 

ex 
- 7.71 996 
-7.14 189 

0.030 447 
2.43 067 
0.984 508 
ex 
ex 

ex 
ex 
ex 
ex 
ex 
ex 
ex 
ex 

d o  not exist above the phase transition, are poor near the phase transition 
(2 - ’  5 V Q  5 Z3) and quite accurate far below the phase transition ( V Q  5 T3) .  
Most model calculations are done in the intermediate region (below, but near the phase 
transition). We would rather emphasize the convergence of the TD expansions over the 
entire range of the interaction strength and therefore have presented the results on a larger 
scale. The excellent agreement a t  the RPA transition represents the intermediate region 
adequately. 

In table 5 we have focused on the accuracy of the Q- TDE truncation by presenting 
relative errors of E , ,  f i ,  O , ~ ( Q )  and o,(g,f). This truncation is important because it 
involves the product of n o  more than four bosons and  is thus quite accessible technically. 
All of the results show that the truncation is capable of describing the monopole model 
well for arbitrary values of the interaction parameter. Two interesting features are that 
the relative error showed a fluctuation near the phase transition for the quantity ii, 
and that the relative error in o,w(Q) approaches a constant (z 12.5 x, independent Q) 
in the high interaction limit. Relative errors of energies a n d  O , ~ ( R )  showed a smooth 
decrease as Q increased and  V Q  decreased. 

In the monopole limit all the relative errors, except for oJW(Q), approach constants 
for a fixed Q. Assuming, in this large interaction limit, that the relative error R,(R) of a 
particula’r quantity q may be represented to  lowest order by the functional form, 
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Table 3. The R = 32 system; details as for table 1 

- 8064.03 
- 8064.03 
- 7560.03 

0.998 016 
63.9 997 
0.500 992 
0.497 023 
0.000 000 

-32.1 582 
-31.9032 
-31.5 447 

0.017 105 
3.81 138 
0,991 389 
0.001 730 
0000 058 

- 32.0 010 
- 31,0645 
- 30.1 258 

0.000 034 
1.06 773 
0.999 983 
0~000 000 
0.000 000 

-8064.53 
- 8064.53 
- 7560.53 

0.998 018 
72.0 456 
0,500 96 1 
0.497 054 
ex 

ex 
-31,9033 
- 31.5 448 

0.017 108 
3.81 308 
0,991 387 
ex 
ex 

ex 
ex 
ex 
ex 

ex 
ex 
ex 

1.06 774 

- 8064.28 
- 8064.28 
- 7560.30 

0,998 018 
66.2 082 
0.500 967 
0,497 046 
ex 

ex 
ey 

ex 

ex 
ex 
ex 

ex 
ex 
ex 
ex 
ex 
ex 
ex 

-31.5 44e 

3.81 145 

ex 

-8064.16 
-8064.16 
-7560.18 

0.998 048 
64.7 577 
0.500 976 
0.497 039 
ex 

ex 
ex 

ex 
ex 
ex 
ex 
ex 

ex 
ex 
ex 
ex 
ex 
ex 
ex 
ex 

-31.5448 

Table 4. Energy differences between the ground and first excited states calculated from the 
a-' TDE truncation. and first, second and third order perturbation theory 

E ,  - E ,  

First Second Third 
R V n j c  Exact R - '  order order order 

0,617 0.616 0.625 0.625 0,601 
4 0.808 0,807 0,812 0,812 0.806 

2 0,904 ex 0.906 0.906 ex 
& 0.952 ex 0.953 0,953 ex 
Q 0.976 ex ex ex ex 

i 0.737 ex 0.765 0.742 ex 
0.882 ex ex 

& 0.939 ex 0.941 ex ex 
& 0.970 ex ex ex ex 

a 0.395 ex 0.531 0.437 0,403 
I 
I 8 0,876 ex 

a 0,254 ex 0,507 0.390 0.336 
i 0.715 ex 0.753 0.724 0.717 

0,876 0.869 ex 
ft 0,936 ex 0,938 ex ex 
& 0.968 ex 0.969 ex ex 
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Table 5 .  The relative errors in the R -  ’ truncation as a function of 
ties E , ,  E, u , ~  and ol(g, f )  

and VR;r for the quanti- 

128 
64 
32 
16 
8 
4 

1 
7 - 
1 

1 
4 
1 
8 

1 
l h  
1 

3 2  
1 

64 

- 

- 

- 

- 

- 

- 

1.03 x 1.03 x 6.1 x 
1.03 x lo-’  1.03 x 6.1 x lo-’  
1.03 1 0 - 2  1.02 x 10-3 6.1 10-5 
1.02 10-2 1.00 x 10-3 6.0 10-5 

1.01 10-2 7.84 x 10-4 5 .4x  10-5 
9.53 10-3 5.67 10-4 4.7 1 0 - 5  
7.81 10-3 2.53 10-4 3 .4x  10-5 
4.67 10-3 4.2 x 10-5 1.6 10-5 
1 . 8 9 ~  10-3 7 10-6 I 10-6 

1.65 10-4 < 10-6 < 10-6 
4.3 x 1 0 - 5  < i o - 6  < i o - 6  

1.1 x10-5  < i o - 6  1 1 0 - 6  

1.02 x lo-’  9.73 x 5.8 x 

5 . 9 7 ~  1 x I O - ~  

1 . 2 4 ~  lo-’  1.03 x IO-’  6.1 x 
1 . 2 4 ~  lo-’ 1.03 x 6.1 x 
1.25 x IO-’  1.03 x lo-’ 6.1 x 
1.25 x lo-’ 1.02 x lo-’  6.1 x 
1.26 x 1.00 x lo-’  6.0 x 
1.29 x lo-’ 0.97 x IO-’ 5.8 x 
1.37 x lo-’  0.92 x IO-’ 5.5 x lo-‘ 
1.78 x 0.87 x lo-’  5 , 2  x 

2.33 x IO-’ 1.57 x IO-’ 5.3 x lo - ‘  
2 .15x10-’  1 . 1 1 ~ 1 0 - ~  6 . 7 x 1 W 5  
2.10 x 1.05 x lo-’ 6.2 x 
2 . 0 8 ~  1 . 0 4 ~  1W2 6 . 2 ~  
2.08 x 1.04 x 6 2 x 

2.53 x 10-2 1.00 10-2 5.5 10-5 

128 
64 
32 
16 
8 
4 
2 
1 
1 

1 
4 
1 
8 

1 
1 6  
1 

32  
1 

6 4  

z 
- 

- 

- 

- 

- 

1.20x10-’  1 .29x10- ’  1 .25x10- ’  1 .72x10- ’  1 . 0 2 ~ 1 0 - ~  6 , 2  x l W ’  
1.19 x lo - ’  1.29 x l o - ’  L24 x l o - ’  1.70 x 10 - ’  1.02 x 6.2 x 
1.18 x l o - ’  1.27 x l o - ’  1.24 x IO-’  1.66 x IO-’ 1.01 x 6.0 x 
1.16 x l o - ’  1.24 x lo - ’  1.20 x l o - ’  1.61 x l o - ’  1.01 x 10 ~3 6.1 x 
1.12 x l o - ’  1.18 x l o - ’  1.15 x lo - ’  1.43 x lo - ’  9.96 x lo - ’  6.0 x 
1.03 x lo - ’  1.08 x l o - ’  1.04 x lo - ’  1.11 x l o - ’  9.72 x lo-’ 5.7 x 
8.87 x IO-’ 8.89 x 8.60 x lo-’ 3.57 x 9.30 x IO-’ 5.7 x 
6.55 x lo-’ 5.92 x IO-’ 5.69 x 1.44 x lo-’  8.90 x lo-’ 5.1 x 
3.66 x lo-’ 2.31 x 2.13 x 4.15 x 1 . 2 0 ~  5.7 x 1 0 - j  
1.40 x lo-’ 2.53 x 4.46 x 4.40 x lo-’ 2.97 x 2.71 x 
5.38 x 10-3 4.11 x 10-4 3.2 10-4 4.30 x 10-2 2 . 2 0 ~  10-3 1.33 x 10-4 
2.30 x 1.61 x 1.0 1 0 - ~  4.20 x 2.14 1 0 - ~  1.26 1 0 - ~  
1.06 x 6 x 5 x 4.21 x 2.09 x 1.24 x 
5 x ~ O - ~  3 x I O - ~  2 xlO-‘  4 , 2 1 ~ 1 0 - ~  2.08x10-’ 1 , 2 3 ~ 1 0 - ~  

then we may find from table 5 that m = 2, verifying that the error in the R-  truncation 
is of the order R - 2 .  

7. Conclusions 

TWO of the boson expansions examined (HPE and TDE) produced excellent values for the 
energies and several physical quantities over the entire range of the interaction parameter 
V including the phase transition. In contrast, a third boson expansion (RPE) and the 
particle-vibration coupling method yielded results equivalent to perturbation theory 
and were therefore valid only below the phase transition. 

The particle-vibration coupling results, obtained by evaluation of all contributing 
graphs and fixing the parameters of the method from the RPA, were in agreement with 
perturbation theory for both the energy and specific matrix element. From this i t  may 
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be inferred that the problem of overcompleteness of the basis has been elimiiiated and 
furthermore, the exclusion principle restrictions are satisfied provided that the phonon 
is defined according to the RPA (equation (31)) and not the quasi-boson approximation. 

After finishing this work we noted that Klein (1971) has discovered that the TDE 
holds for arbitrary I/ in the L,ipkin model. Since he does not present details we have 
included a coverage of the r D E  for comparison with the other approximations. 
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